Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships.
نویسندگان
چکیده
A slow oscillation (< 1 Hz) has recently been described in intracellular recordings from the neocortex and thalamus (Steriade et al., 1993c-e). The aim of the present study was to determine the phase relations between cortical and thalamic neuronal activities during the slow EEG oscillation. Intracellular recordings were performed in anesthetized cats from neurons in motor and somatosensory cortical areas, the rostrolateral sector of the reticular (RE) thalamic nucleus, and thalamocortical (TC) cells from ventrolateral (VL) nucleus. The EEG was used as time reference for alignment of activities in different, simultaneously recorded neurons, including dual impalements of cortical cells as well as cortical and TC cells. The spontaneous EEG oscillation was characterized by slowly recurring (0.3-0.9 Hz) sequences of surface-positive (depth-negative) sharp deflections, often followed by oscillatory activity within the frequency range of sleep spindles (7-14 Hz) or at faster frequencies. Cortical and RE cells were similarly hyperpolarized during the depth-positive EEG waves and were depolarized during the depth-negative EEG deflections. In many instances, the cell depolarization was associated with oscillations at the spindle frequency or with tonic firing at rates related to the level of depolarization. TC neurons were hyperpolarized during the depth-positive EEG waves and displayed a series of IPSPs, at the spindle frequencies, during the depth-negative EEG waves. Depending on the membrane potential (Vm), TC cells could fire spike bursts at the onset of the EEG depth-negativity, or their firing could be delayed by subsequent IPSPs. The sequence of spontaneous EEG and cellular events described above also characterized the responses to cortical and thalamic stimulation. Simultaneous intracellular recordings of pairs of cortical cells or cortical and TC cells showed that spontaneous transitions from less synchronized to more synchronized EEG states were marked by a simultaneous hyperpolarization, coincident with an overt depth-positive EEG wave. We conclude that during low-frequency oscillatory states, characteristic of slow-wave sleep, neocortical and thalamic neurons display phase relations that are restricted to narrow time windows, and that synchronization results from a generalized inhibitory phenomenon. Moreover, EEG synchronization is reflected as active inhibition in TC neurons. That this pattern is also present in states of hypersynchronization, such as seizure activity, is shown in the following paper (Steriade and Contreras, 1994).
منابع مشابه
Integration of low-frequency sleep oscillations in corticothalamic networks.
The corticothalamic system acts as a complex network in promoting the various oscillatory patterns (slow oscillation, spindles, delta) that characterize the state of quiet sleep. Local synchronizing mechanisms of any of the above-mentioned oscillations occur at the site of their genesis, thalamic or cortical. These mechanisms are assisted by the wide-range, synchronized occurrence of the cortic...
متن کاملIntracortical and corticothalamic coherency of fast spontaneous oscillations.
We report that fast (mainly 30- to 40-Hz) coherent electric field oscillations appear spontaneously during brain activation, as expressed by electroencephalogram (EEG) rhythms, and they outlast the stimulation of mesopontine cholinergic nuclei in acutely prepared cats. The fast oscillations also appear during the sleep-like EEG patterns of ketamine/xylazine anesthesia, but they are selectively ...
متن کاملAre corticothalamic 'up' states fragments of wakefulness?
The slow (<1 Hz) oscillation, with its alternating 'up' and 'down' states in individual neurons, is a defining feature of the electroencephalogram (EEG) during slow-wave sleep (SWS). Although this oscillation is well preserved across mammalian species, its physiological role is unclear. Electrophysiological and computational evidence from the cortex and thalamus now indicates that slow-oscillat...
متن کاملDetection of Dynamic Rhythms of Electroencephalogrphy by Using Wavelet Packets Decomposition
Wavelet packet decomposition is used to investigate the time-varying characteristics of clinical EEG signals. On the basis of the nonstationary nature of clinical EEG rhythms, wavelet packet analysis is employed for designing filters with different frequency characteristics to detect 4 kinds of EEG rhythms. The coefficients of wavelet transformation corresponding to the rhythms are used to form...
متن کاملChanges of the brain’s bioelectrical activity in cognition, consciousness, and some mental disorders
Background: An electroencephalogram (EEG) is an accepted method in neurophysiology with a wide application. Different types of brain rhythms indicate that simultaneous activity of the brain cortex neurons depend on the person’s mental state. Method: we have focus on reviewing the existing literature pertaining to changes of the brain’s bioelectrical activity that recorded from the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 15 1 Pt 2 شماره
صفحات -
تاریخ انتشار 1995